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We define as an optimal mixer a mixing device able to deliver a uniformly optimal
mixing performance over a wide range of operating and initial conditions. We
consider the conceptual problem of designing an optimal mixer starting from a
well-known reference mixer, the sine flow. We characterize the mixing performance
of the reference mixer, and show that it performs poorly and erratically over a wide
range of operating conditions and is quite sensitive to the geometry of the initial
concentration field. We define as a target performance the best mixing performance
the reference mixer is able to achieve. In steps we modify the design of the reference
mixer. First, we optimize the time sequence of the switching protocols and show that
the mixing performance of the time-optimized mixer, although substantially improved
with respect to the reference mixer, is still far from achieving the target performance
and being insensitive to the geometry of the initial concentration field. The analysis
of the performance of the time-optimized mixer brings to light the deficiency of the
actuating system used, which delivers always the same amount of shear at the same
locations. We modify the actuating system by allowing the stirring velocity fields to
shift along their coordinate axes. A new mixer, the space-optimized mixer, is created
by equipping the reference mixer with the new actuating system and optimizing the
shift of the stirring velocity field at each iteration. The space-optimized mixer is able to
deliver the target performance over the upper two-thirds of the operating range. In the
lower one-third, the performance of the space-optimized mixer deteriorates because of
the use of a periodic protocol. A optimal mixer is finally obtained using the actuating
system of the space-optimized mixer and coupling the time and shift optimizations.
The resulting optimal mixer is able to deliver a uniform target performance,
insensitive to the geometry of the initial conditions, over the entire operating range.

1. Introduction
Mixing of two or more different fluids is a crucial step in pharmaceutical, food,

polymer and biotechnological processes, to name a few. In many applications, the
ones targeted in this study, it is impractical or impossible to promote turbulence
to enhance mixing. Mixing in the laminar regime is generally poor because the
fluid motion is dominated by viscous forces. In industrial applications, poor mixing
results in severe problems such as insufficient homogenization, low product quality
and excessive amount of byproducts. Furthermore, the present competitive market
demands a decrease in manufacturing costs of the products obtained by laminar
mixing. Therefore, the problem of designing a mixing device able to deliver the
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required degree of homogenization in the least amount of time using the least
amount of energy is of great practical importance.

The study on laminar mixing began with the pioneering work by Aref (1984),
who introduced the concept of chaotic advection. Aref’s work stimulated numerous
studies on laminar mixing (e.g. Ottino 1989; Aref & El Naschie 1995; Alvarez et al.
1998; Zalc & Muzzio 1999; Aref 2002; Szalai et al. 2003; Gleeson 2005; Gouillart,
Thiffeault & Finn 2006; Phelps & Tucker 2006; Sturman, Ottino & Wiggins 2006;
Vikhansky & Cox 2007). It has been shown that the quality of mixing strongly
depends on the time sequence of the actuations used to stir the mixture, i.e. on the
stirring protocol of the mixing device. With a poorly chosen stirring protocol, fluid
homogenization can be achieved mainly by molecular diffusion.

The required quality of mixing often depends on the industrial application
considered. Depending on the production constraints and physical properties of
the fluids to be mixed, several different types of mixing devices have been designed
over the years. Most of industrially relevant mixing devices can be subdivided into
three main types: stirred vessels, extruders and static mixers (Paul, Atiemo-Obeng &
Kresta 2004). In a stirred vessel, one or more shafts promote mixing by rotating
impellers within a vessel filled with a mixture of two or more fluids. In an extruder,
mixing is promoted by rotating one or more screws inside a barrel filled with the
mixture of fluids. In a static mixer, a pressure gradient forces two or more fluids to
flow through a pipe equipped with motionless elements devised to promote mixing.
Stirred vessels and extruders are equipped with active actuating systems, while static
mixers have passive actuating systems.

In general, the quality of mixing produced by a mixing device depends on the
mechanical configuration of the device and its actuating system. For example, the
mechanical configuration of a stirring vessel includes the diameter and height of
the vessel, as well as the shape and location of the impellers. The mechanical
configuration of an extruder includes the shape of the screws and the diameter
of the barrel, while the configuration of a static mixer includes the diameter of the
pipe, as well as the shape and location of the motionless elements.

The quality of mixing induced by a given mixing device with a fixed mechanical
configuration in general depends on the conditions in which the device operates.
Operating conditions are the values of the independent parameters that specify a
mixing process and can be changed without a mechanical reconfiguration of the
device. Operating conditions common to many mixers include parameters such as
temperature, Reynolds and Péclet numbers. As many practical applications involve
mixing of non-Newtonian fluids, operating conditions often include parameters
that describe rheological properties of the fluids, such as the Deborah number.
Furthermore, the operating conditions of a mixing device with an active actuating
system include the independent parameters which characterize the action of the
actuating system. Examples are the angular speed of the impellers in a stirring vessel
and the angular speed of the screws in an extruder. Note that the interdependence of
the parameters describing the operating conditions and mechanical configuration is
application dependent. The range of operating conditions over which a given mixing
device should operate effectively is referred to as the operating range of the device.

In recent years, attempts were made to find optimal mechanical configurations
and operating conditions for several mixing devices. Cunha, Covas & Oliveira (1998)
studied mixing in a polymer extruder. The authors used a genetic algorithm to
determine the range of optimal operating conditions for which the extruder becomes
highly mixing efficient. Rodrigo et al. (2003) determined the optimal operating
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conditions for a prototype named as the eccentric helical axial mixer. Szalai &
Muzzio (2003) determined the range of operating conditions of a static mixer for
which the mixer is the most mixing efficient. Stremler & Cola (2006) and Stremler
(2009) determined mechanical configurations and operating conditions that optimize
mixing in a flow stirred by periodically pulsing two pairs of sources and sinks. Gibout,
Guer & Schall (2006), using a genetic algorithm, optimized the mechanical design
of a static mixer. Singh et al. (2008a) considered mixing in a rotated arc mixer, in
which a static mixer is augmented with an active actuating system, and determined an
optimal mechanical configuration for which the mixer is highly efficient. Singh et al.
(2008b) characterized the mixing performance of several micromixers in terms of the
mechanical configurations and operating conditions. All the above studies indicate
that often the optimal mixing efficiency of a mixing device can be achieved only for
a particular mechanical configuration and a narrow range of operating conditions.
Outside of this range or for different mechanical configurations, the performance of
the mixing device may deteriorate severely.

Often the quality of mixing depends also on the geometrical configuration of the
mixture injected into the mixing device. Hobbs & Muzzio (1997) investigated this
effect on the mixing efficiency of a Kenics static mixer. They found that the least
effective injection location requires up to four additional mixing elements to achieve
the same quality of mixing as for the most effective injection location. Zalc, Szalai &
Muzzio (2003) studied the effect of injection location on the mixing efficiency of SMX
static mixer. They found that the off-centre injection location considerably reduces the
homogeneity of the mixture when compared with that obtained using the centreline
injection location. Zalc et al. (2003) noted that although the sensitivity to injection
location can be reduced by adding extra mixing elements, this may be impractical as it
also increases the required pressure gradient and, consequently, the cost of operation.
Recently, Thiffeault & Pavliotis (2008) applied a variational approach to determine
the optimal source distributions which maximize mixing for a range of operating
conditions.

The above studies indicate that currently a given mixing device is able to deliver
the required mixing efficiency only within a small subrange of its operating range
and only for a certain initial configuration of the mixture. Furthermore, in practical
applications, both the operating conditions and the geometrical configuration of
the mixture often vary with time and, consequently, the product quality generated
by current industrial mixers also changes with time. Therefore, it is of great
practical importance to design a mixing device able to maintain a uniform level
of homogenization for time-dependent operating and initial configurations. Thus
motivated, we consider, as a case study, the characterization and optimization of a
conceptual mixing device which shares some of the problematics with the mixing
devices currently in use. Our goal is to design an optimal mixer, a mixing device able
to deliver the same optimal mixing performance over a wide range of operating and
initial conditions while consuming the same amount of energy.

Poorly performing industrially relevant mixers often stir using a periodic protocol
because this protocol can be realized at low cost. The poor performance is often due
to the presence of islands of regular motion (Aref 2002; Finn, Cox & Byrne 2004;
Paul et al. 2004 and references therein) which emerge around elliptic fixed points and
greatly reduce mixing efficiency. In order to overcome this difficulty, Liu, Muzzio &
Peskin (1994) suggested to enhance mixing by using aperiodic protocols, which do
not induce elliptic fixed points and thus are more likely to produce mixtures free of
islands of regular motion.
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The work of Liu et al. (1994) stimulated the development of new mixing diagnostics.
Because commonly used diagnostics, such as Poincaré sections and Lyapunov
exponents, are inapplicable to aperiodic protocols, Liu et al. (1994) adopted the
stretching field statistics and the spreading rate of passive tracers to measure the
quality of mixing. Several other useful measures were reported in literature and
summarized by Finn et al. (2004). Recently, Mathew, Mezić & Petzold (2005)
introduced the mix-norm, a new indicator of mixing. This diagnostic is capable
of quantifying the mixing efficiency of periodic and aperiodic protocols when applied
to purely advective or advective–diffusive flows. In particular, the mix-norm can be
used to evaluate mixing efficiency of a stirring protocol in the context of a given
initial concentration field.

The introduction of aperiodic stirring protocols by Liu et al. (1994) was an
important step towards enhancing the performance of a mixing device. However,
the mixing efficiency of an aperiodic protocol can vary significantly over the
operating range of a mixing device and when the protocol is applied to different
initial configurations of the mixture (Cortelezzi, Adrover & Giona 2008; Gubanov &
Cortelezzi 2009). This hinders the use of arbitrary chosen aperiodic stirring protocols
in industrial applications.

The problem of deriving an optimal stirring protocol for an idealized mixing device
was formulated as a control problem by D’Alessandro, Dahleh & Mezić (1999).
They considered the eggbeater flow (Franjione & Ottino 1992), in which a fluid
constrained on a two-dimensional torus is stirred by two velocity fields v0 and v1

acting orthogonally. The control problem was stated as follows: given the shapes of
the stirring velocity profiles and a measure of mixing, find a stirring protocol which
extremizes this measure by intelligently blinking v0 and v1. Using entropy as a measure
of mixing and simple shear as velocity profiles, v0(y) = [ay, 0]∗, v1(x) = [0, bx]∗, ab >

0, where the superscript ∗ indicates transpose, D’Alessandro et al. (1999) derived a
periodic protocol which maximizes entropy among all possible periodic sequences
composed of the two shear flows v0 and v1.

The control approach to fluid mixing suggested by D’Alessandro et al. (1999) has
been applied in recent studies by Mathew et al. (2007), Cortelezzi et al. (2008) and
Gubanov & Cortelezzi (2009). Mathew et al. (2007) considered as a stirring flow the
flow induced on a two-dimensional torus by a finite set of prescribed force fields
modulated in time. They solved the problem of finding a sub-optimal protocol which
minimizes a weighted sum of the mix-norm and the stirring action per unit mass.

Cortelezzi et al. (2008) considered the eggbeater model stirred by two orthogonal,
sinusoidal velocity profiles v0(y) = [sin(2πy), 0]∗ and v1(x) = [0, sin(2πx)]∗. This model,
also known as the sine flow (Liu et al. 1994), has been a popular playground for the
investigation of laminar mixing (Liu et al. 1994; Pierrehumbert 1994; Antonsen et al.
1996; Alvarez et al. 1998; Muzzio et al. 2000; Szalai et al. 2003; Thiffeault, Doering &
Gibbon 2004; Phelps & Tucker 2006). Cortelezzi et al. (2008) introduced the short
time horizon procedure for the optimization of a stirring protocol. They showed that
for several operating conditions, this procedure is able to generate stirring protocols
which are nearly as mixing efficient as the optimal protocol.

A recent work (Gubanov & Cortelezzi 2009) assessed the sensitivity of the
protocols obtained using the short time horizon optimization to the geometry of the
initial concentration field. As benchmarks in this assessment, Gubanov & Cortelezzi
(2009) used the periodic protocol and the recursive symmetry-breaking protocol,
a deterministic aperiodic protocol introduced by Liu et al. (1994). Gubanov &
Cortelezzi (2009) showed that optimized protocols are generally less sensitive to the
geometry of the initial scalar field than the periodic and recursive symmetry-breaking
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protocols. They concluded that the optimization of the stirring protocol is essential for
achieving uniformly high quality of mixing for different initial configurations of the
mixture.

In this study, we describe the process of characterizing and enhancing the mixing
performance of a conceptual mixing device, the reference mixer. As a reference mixer,
we choose the sine flow system. The sine flow is a simple model which is amenable
to analysis at a moderate computational cost. At the same time, the sine flow is
known to capture the complex behaviour of industrially relevant mixing devices such
as Kenics static mixer (Hobbs, Alvarez & Muzzio 1997). Therefore, the techniques
that substantially enhance the mixing performance of the sine flow could be in
principle applied to more realistic and complex flows. Furthermore, the performance
of the optimal mixer derived from the sine flow provides an upper bound for the
enhancements that could be achieved in practice. We consider the pure advection
case only, because we are targeting mixers operating at Péclet numbers � 104. At
these Péclet numbers, it has been shown that optimal protocols designed for purely
advective flows can be robustly transported to advective–diffusive flows of small
diffusivities (Cortelezzi et al. 2008).

In § 2, we introduce the mathematical formulation of the sine flow, describe
the solution to the purely advective problem and discuss the procedure for the
computation of the mix-norm. In § 3, using the mix-norm as a measure of mixing,
we define the range of operating conditions of the reference mixer and identify the
operating conditions and initial configurations which result in the best performance of
the reference mixer. We define this best performance value as the target performance.
We show that the reference mixer achieves the target performance only within a
narrow range of operating conditions, while outside of this range, the performance
becomes poor and inconsistent. We show that this is mainly caused by the presence of
persistent pockets of unmixed fluid, which are induced in part by the periodic stirring
protocol and in part by the mechanical configuration of the reference mixer. The goal
of this study is to explore the operating improvements and redesign of the reference
mixer necessary to obtain an optimal mixer, a mixer which is able to deliver the target
performance over the entire range of operating conditions and a wide range of initial
configurations of the mixture.

In § 4, we introduce a new mixing device which has the same mechanical
configuration and actuating system as the reference mixer, but stirs the mixture with
the protocols generated by the short time horizon procedure (Cortelezzi et al. 2008).
We refer to this device as the time-optimized mixer. We show that this mixer performs
substantially better than the reference mixer but within two ranges of operating
conditions. We demonstrate that this deterioration in performance is caused by the
deficiency of the actuating system used, which delivers always the same amount of
shear at the same location.

In § 5, we introduce a new mixing device which has the same geometry and uses
the same protocols as the reference mixer, but has a redesigned actuating system,
which allows the stirring velocity fields to shift along their coordinate axes. We refer
to this mixing device as the space-optimized mixer. We show that this mixer is nearly
insensitive to the geometry of the initial configuration of the mixture and is able to
achieve the target performance in the medium/high range of operating conditions.

Finally, in § 6, an optimal mixer is obtained using the actuating system of the
space-optimized mixer and coupling the time and shift optimizations. We show that
the resulting mixer is able to achieve the target performance over the entire operating
range and for a large set of initial configurations of the mixture. We summarize our
work and draw conclusions in § 7.
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Figure 1. The schematic of the reference mixer. (a,b) The stirring velocity fields v0 and v1,
respectively, defined in (2.1). The curves joining the opposite sides of the square mixing domain
indicate periodic boundary conditions.

2. The reference mixer: the time-periodic sine flow
In this section, we introduce the time-periodic sine flow, our reference mixer.

We review the solution of the purely advective problem. We also summarize the
computation of the mix-norm, a measure of mixedness which is used throughout this
study to assess the performance of the mixing devices and as the cost function for
the optimization procedures.

2.1. Mathematical model and operating conditions of the reference mixer

We adopt the sine flow (Liu et al. 1994) as a reference mixer to develop and test our
optimization and design strategies. In the sine flow model, a passive scalar field (e.g.
concentration field) is stirred iteratively by a pair of orthogonal, sinusoidal velocity
fields

v0(x, y) = [sin(2πy), 0]∗, v1(x, y) = [0, sin(2πx)]∗, (2.1)

inside a unit square domain with periodic boundaries; see figure 1. During each
iteration, the concentration field is advected by one of the two velocity fields, v0 or
v1, over a switching time τ ; see figure 1. A stirring protocol is defined as a sequence of
N binary digits {αk}N

k =1, where N is the total number of iterations to be performed.
Entries αk set to zero and one identify the velocity fields v0 and v1, respectively. The
set of 2N binary strings of length N represents all admissible protocols that can be
used to stir the mixture by a given final time Tf = τN . The sine flow stirred by the
periodic protocol {0, 1, 0, 1, . . .} is referred to as the time-periodic sine flow and has
been extensively studied (Liu et al. 1994; Pierrehumbert 1994; Antonsen et al. 1996;
Alvarez et al. 1998; Muzzio et al. 2000; Adrover, Cerbelli & Giona 2002; Giona,
Cerbelli & Adrover 2002; Szalai et al. 2003; Giona et al. 2004; Thiffeault et al. 2004;
Florek & Tucker 2005; Phelps & Tucker 2006; Shaw, Thiffeault & Doering 2007;
Vikhansky & Cox 2007).

The operating conditions of the sine flow are defined by the value of the switching
time τ and the energy consumption. The latter, also known as the power input per
unit mass, can be defined as the rate at which the actuating system does work on the
mixture, and can be computed as

Pin =
d

dt

∫
V

1

2
v · v dV +

1

ρ

∫
V

σ :D dV, (2.2)

where V is the flow domain, ρ is the fluid density, σ is the stress tensor and
D= [∇v + (∇v)∗]/2 is the stretching tensor (Malvern 1969). Equation (2.2) states that
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the power input contributes to the kinetic and internal energy of the fluids. In this
study, we consider incompressible Newtonian fluids, for which the power input of the
velocity fields (2.1) is Pin(v0) = Pin(v1) = 2π2ν, where ν is the kinematic fluid viscosity.
Note that for Newtonian fluids the power input is proportional to the square of
the L2 norm of the shear rate. Owing to the above definition, restricting the energy
consumption restricts the amount of shear. Throughout this study, we will derive and
compare only mixing devices which perform the same amount of work and induce
the same amount of shear. This allows a fair comparison of the performance of the
different mixers introduced. Note that a different definition of energy consumption
would not impact the results presented in the subsequent sections.

2.2. Solution to the purely advective sine flow problem

Pure advection of a concentration field ϕ(x, y, t) is governed by the equation

∂ϕ

∂t
= −vαk

· ∇ϕ, (2.3)

where k =1, 2, . . . , N , the iteration number, controls the time evolution of the system,
i.e. (k − 1)τ � t < kτ , and the velocity field vαk

is either v0 if αk is zero (see figure 1a),
or v1 if αk is one (see figure 1b). We non-dimensionalize (2.3) using as characteristic
time the advection time of the system, defined as TA = L/U , where U is the maximum
absolute value of the stirring velocity field, and L is the side of the square domain.
In the sine flow system, U = L =1, and TA =1. Consequently, the dimensional and
dimensionless forms of (2.3) are identical.

Equation (2.3) states that in the absence of diffusion the concentration associated
with any fluid particle is preserved in time. Hence, the time evolution of the
concentration field can be obtained from the time evolution of fluid particles moving
under the action of the stirring velocity fields (2.1).

To compute the concentration field, the unit square domain is discretized into
M × M non-overlapping equal square cells, where M , the grid resolution, is an
integer number. The concentration within the (i, j )th cell is approximated by the
concentration of the fluid particle (Xi,j (t), Y i,j (t)) located at time t = tk in the centre
of the cell. The position of this particle is tracked backwards in time to the initial
position (Xi,j

0 , Y
i,j

0 ) using the map (Cortelezzi et al. 2008)

(
X

i,j

m−1

Y
i,j

m−1

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝Xi,j

m − τ sin(2πY i,j
m )

Y i,j
m

⎞
⎠ mod 1, if αm = 0,

⎛
⎝ Xi,j

m

Y i,j
m − τ sin(2πXi,j

m )

⎞
⎠ mod 1, if αm = 1,

(2.4)

for m = k, k − 1, k − 2, . . . , 1. Then, the concentration associated with the (i, j )th
particle at time tk is obtained by determining its initial concentration, i.e.

ϕ
(
X

i,j
k , Y

i,j
k , tk

)
= ϕ

(
X

i,j

0 , Y
i,j

0 , 0
)
. (2.5)

2.3. Computation of the mix-norm

In this study, we evaluate the performance of the reference and optimized mixing
devices using the mix-norm. The mix-norm is also used as a cost function by the
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optimization procedures that generate stirring protocols for the optimized mixing
devices. Consequently, it is important to compute the mix-norm efficiently and
accurately.

The mix-norm is a multi-scale measure of mixedness of a concentration field. It
was introduced by Mathew et al. (2005) and is defined as the root mean square of the
average values of the concentration field over a dense set of subsets contained in the
flow domain. In the case of a square domain with periodic boundaries, the mix-norm
μϕ of a concentration field ϕ(x, y, t) having zero mean can be computed as follows
(Mathew et al. 2005):

μϕ =

√ ∑
m,n∈�

|Φm,n |2√
1 + 4π2(m2 + n2)

, (2.6)

where {Φm,n}m,n∈� is the spectral representation of the concentration field. Note that
(2.6) is valid only for concentration fields with zero mean value. In the case when
the mean concentration is not zero, the mean value must be subtracted from the
concentration field before computing its spectral representation.

An approximate spectral representation of the concentration field ϕ(x, y, t) can be
obtained by computing the fast Fourier transform (FFT) of its discrete representation
ϕ(Xi,j

k , Y
i,j
k ), where i, j = 1, . . . , M . The mix-norm is then obtained by substituting

the Fourier coefficients Φm,n into (2.6). To ensure that the value of the mix-norm
computed in the purely advective case is sufficiently accurate and, at the same
time, the computation is feasible, in this study we use the grid resolution M = 2048.
Gubanov & Cortelezzi (2009) discuss the details regarding this choice of the resolution.
The validity of this choice is further discussed in § 3.

3. Performance of the reference mixer
In this section, we characterize the performance of the reference mixer by computing

the value of the mix-norm of the concentration field at a final time Tf for a range of
operating conditions, i.e. for switching time values [τmin , τmax ]. This characterization
will provide a benchmark for the optimized mixers derived in the subsequent sections.

To make our study physically meaningful, we base our choice of Tf , τmin and
τmax on the estimates of the stretching efficiency, striation thickness and rate of
folding induced by the reference mixer. Accurate computations of stretching and
striation thickness induced by the sine flow for a few values of the switching time
τ are available in the literature (Alvarez et al. 1998; Muzzio et al. 2000; Cerbelli,
Alvarez & Muzzio 2002). However, these results are not sufficient to justify the choice
of the range of switching times and Tf . To this end, we derive analytically more
straightforward estimates of the stretching efficiency, striation thickness and rate of
folding. We approximate the stirring induced by the velocity fields v0 = [sin(2πy), 0]∗

and v1 = [0, sin(2πx)]∗ near the centre of the square domain with the velocity fields
ṽ0 = [2πy, 0]∗ and ṽ1 = [0, 2πx]∗. In this small region the shear rate γ̇ of the sine flow
reaches its maximum value, i.e. γ̇ = 2π. Hence, the estimates provide a bound for the
stretching efficiency, striation thickness and rate of folding of the sine flow.

The dimensionless stretching efficiency eλ of the reference mixer is (Ottino 1989)

eλ =
d ln λ/dt√

D : D
, (3.1)
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Figure 2. (a) The estimate of the stretching efficiency 〈eλ〉τ of the reference mixer as a function
of the switching time τ . (b) Estimates of the final striation thickness induced by the final times
Tf =4 (dotted line), Tf =5 (dashed line), Tf = 6 (solid line), Tf = 7 (dash-dotted line) and
Tf =8 (dash-dot-dotted line) as a function of the switching time τ . The horizontal dashed line
indicates the value of striation thickness equal to the side of one pixel at resolution M = 2048.

where d ln λ/dt is the rate of stretching. For a simple shear flow the shear rate is
γ̇ =

√
2D : D and the stretching of a fluid element initially aligned, for example, with

y axis is λ(t) = [(γ̇ t)2 + 1]1/2. Substituting the estimate for λ into (3.1) and averaging
over the time interval [0, τ ], we obtain

〈eλ〉τ =
ln[(γ̇ τ )2 + 1]

γ̇ τ
√

2
. (3.2)

The stretching efficiency estimated by (3.2) is shown in figure 2(a). It reaches its
maximum value at τ = 1/π ≈ 0.315.

The striation thickness s(t) is roughly inversely proportional to the stretching λ(t).
The stretching of a fluid element initially aligned, for example, with the y axis over a
switching time τ is λ(τ ) = [(γ̇ t)2 + 1]1/2. Then, over m switching times, the stretching
is λ(mτ ) = [(γ̇ t)2 + 1]m/2. This value is roughly equal to the decrease in the striation
thickness, s(0)/s(mτ ). If we assume as initial striation thickness s(0) = 1/2, i.e. half of
the side of the square domain, then the striation thickness at time t = mτ is

s(mτ ) =
1

2

[
(γ̇ τ )2 + 1

]−m/2
. (3.3)

Figure 2(b) shows the estimated striation thickness at the final times
Tf = mτ = 4, 5, 6, 7, 8 as a function of the switching time τ . As expected, the striation
thickness decreases with increasing final time Tf . However, for a fixed final time Tf ,
the striation thickness spans several orders of magnitude depending on the value of
the switching time τ . For small switching times, i.e. τ � 0.1, the striation thickness
assumes one of its largest values, about 10−2, for all values of Tf . As τ increases,
the striation thickness decreases and reaches the minimum at τ = 1/π ≈ 0.315, which
corresponds to the maximum of the stretching efficiency 〈eλ〉τ ; see figure 2(a). For
τ � 1/π, the striation thickness increases with increasing τ ; see figure 2(b).

It is important to relate the striation thickness to the grid resolution used, M = 2048,
to guarantee well-resolved numerical simulations. At this resolution, the grid size is
1/2048 ≈ 4.8 × 10−4. This value is indicated by the horizontal dashed line in figure 2(b).
As the reference mixer is known to induce striations whose thickness spans several
orders of magnitude (Alvarez et al. 1998), the thickness of most striations can be
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Figure 3. The estimate of the change of orientation 
θ induced by the reference mixer over
one iteration as a function of the switching time τ .

safely estimated to be at least two orders of magnitude larger than the estimated
minimal striation thickness. Therefore, at final times Tf = 4 and 5, the grid M = 2048
overresolves the scalar field. On the other hand, when the reference mixer operates
at switching time τ = 1/π, for which the striation thickness is minimal, the final
times Tf =7 and 8 appear to be too large for the chosen grid resolution, M = 2048.
Consequently, we choose Tf = 6 as a reasonable final time to be used throughout
this study. This value of Tf can be considered a challenge for the mixer because it
is expected to produce a homogeneous mixture by advecting particles at most over
six characteristic lengths. Note that 30 characteristic lengths are needed to obtain a
homogenized mixture with one of the most effective industrially relevant static mixers,
the SMX mixer (Paul et al. 2004).

We relate the amount of folding to the change of orientation of a fluid element
under the stirring action of the velocity field. A simple shear flow with shear rate γ̇

changes the initial orientation θ(0) of a fluid element initially aligned, for example,
with y axis of an angle


θ(τ ) = |θ(τ ) − θ(0)| =
π

2
− arctan

1

γ̇ τ
. (3.4)

Figure 3 shows that the change of orientation 
θ(τ ) is small at small τ , about 45◦

when τ =0.15, about 81◦ when τ = 1.0 and about 84◦ when τ = 1.5. The change
of orientation asymptotically approaches the value θ(∞) = 90◦. As expected, the
longer the shear flow is acting the larger is the change of orientation of a fluid
element. However, the reference mixer is particularly efficient in creating folding for
0.5 � τ � 1.0. For larger switching times, folding is mainly achieved during the first
part of the switching time, whereas stretching is mainly induced during the last part.
Because stretching induces linear mixing, it follows that the last part of a large
switching time is poorly mixing efficient.

We use the above estimates as well as practical considerations to choose a range of
operating switching times [τmin, τmax ] which mimics the operating range of a realistic
mixer. For an efficient mixer with an order of magnitude operating range, the switching
time, τmin , should be small compared with the characteristic advection time, TA =1,
whereas the switching time, τmax , should be comparable to TA. Obviously, the switching
time value τ = 1/π, which corresponds to the maximal stretching efficiency and
minimal striation thickness, should lie within the range of operating switching times,
i.e. τmin � 1/π � τmax . As the smaller operating switching time, we choose τmin = 0.1,
which is an order of magnitude smaller than the characteristic advection time. This
value is also sufficiently large to prevent a too frequent switching of the velocity
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(a) (b)

Figure 4. (a) The ‘vertical’ and (b) the ‘envelope’ initial configurations of the concentration
field. The initial concentration ϕ(x, y, 0) is equal to −1 and +1 inside the black and white
regions, respectively.

fields, which should be avoided to reduce energy consumption. Moreover, in the
case of optimized mixers, which perform optimizations over each switching time,
the switching time should be sufficiently large for the computation to be completed
successfully. As the larger switching time, we choose τmax = 1.3. This value should
be considered a challenge because, as shown above, for switching times larger than
unity, the amount of stretching induced by a simple shear flow is much larger
than the amount of folding. Moreover, large switching times reduce the number of
optimizations performable before reaching the final time and, consequently, reduce
the effectiveness of the optimization procedure.

To assess the performance of the reference mixer in terms of its sensitivity to
the geometry of the initial configuration of the mixture, we consider two initial
configurations, the ‘vertical’ and the ‘envelope’, shown in figure 4. The initial
concentration ϕ(x, y, 0) is equal to −1 and +1 inside the black and white regions,
respectively. We named ‘vertical’ the initial configuration where the white and black
fluids are segregated in two equal sized rectangles and the interface is a vertical line.
We choose the ‘vertical’ configuration because it is widely used as an initial condition
in literature, and the sine flow performs much better when starting from this initial
condition than when starting from a number of differently chosen initial conditions
(Gubanov & Cortelezzi 2009). We named ‘envelope’ the initial configuration where
the white and black fluids are segregated in four identical triangles delimited by the
two diagonals of the square domain. We choose the ‘envelope’ configuration because
it has been shown (Gubanov & Cortelezzi 2009) that for this initial configuration
the reference mixer performs considerably worse than for the ‘vertical’ and other
initial configurations. We quantify the sensitivity of the mixing performance of the
reference mixer to the geometry of the initial configuration using the relative sensitivity
(Gubanov & Cortelezzi 2009)

δ = max
τmin �τ�τmax

⎛
⎜⎝ |μV (τ ) − μE(τ )|

μV (τ ) + μE(τ )

2

⎞
⎟⎠ , (3.5)

where μV (τ ) and μE(τ ) are the mix-norm values induced by a mixer at the final time
Tf when applied to the ‘vertical’ and the ‘envelope’ initial configurations, respectively.

We evaluate the performance of the reference mixer by computing the final values of
the mix-norm for the range of switching times 0.1 � τ � 1.3. This interval is sampled
using a switching time step 
τ =0.01 to capture the representative behaviour of
the reference mixer. Note that the final mix-norm value is a discontinuous function
of τ because the sine flow is known to exhibit sudden bifurcations. However, we
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Figure 5. (a) Value of the mix-norm induced by the reference mixer at time Tf = 6 vs.
switching time τ for the ‘vertical’ (solid line) and the ‘envelope’ (dashed line) initial
configurations. The grey horizontal line indicates the target mixing performance. (b–f ) Poincaré
sections of the reference mixer operating at switching time values 0.1 (b), 0.4 (c), 0.5 (d ), 0.9
(e) and 1.1 (f ). (g–k ) Snapshots at time Tf = 6 of the concentration field ϕ stirred by the
reference mixer operating at switching time values 0.1 (g), 0.4 (h), 0.5 (i ), 0.9 (j ) and 1.1
(k ) when applied to the ‘vertical’ initial configuration. (l–p) Snapshots at time Tf = 6 of the
concentration field ϕ stirred by the reference mixer operating at switching time values 0.1 (l ),
0.4 (m), 0.5 (n), 0.9 (o) and 1.1 (p) when applied to the ‘envelope’ initial configuration. The
filled circle and the open circle markers within panel (a) correspond to the concentration fields
(g–k ) and (l–p), respectively.

present the mix-norm value as continuous function of τ for convenience. Figure 5(a)
shows the values of the mix-norm induced by the reference mixer at time Tf = 6
when applied to the ‘vertical’ (solid line) and the ‘envelope’ (dashed line) initial
configurations, respectively. This figure summarizes and extends several results well
known in the literature (Liu et al. 1994; Alvarez et al. 1998; Muzzio et al. 2000; Giona
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et al. 2002, 2004; Szalai et al. 2003; Phelps & Tucker 2006; Vikhansky & Cox 2007;
Cortelezzi et al. 2008; Gubanov & Cortelezzi 2009). Clearly, the mixing efficiency of
the reference mixer varies considerably over its operating range. The mixer is the least
mixing efficient for small switching times, but its efficiency increases as τ increases
towards τ = 0.8. The mixer is most efficient when 0.82 � τ � 0.98 for the ‘vertical’
initial configuration and when 0.8 � τ � 0.9 for the ‘envelope’ configuration. For
τ � 1.0, the mixer becomes less efficient. Figure 5(a) also shows that the reference
mixer is highly sensitive to the geometry of the initial configuration of the mixture.
The value of the relative sensitivity (3.5) is about 85.6 %.

Figure 5(b–f ) shows Poincaré sections obtained for switching times τ = 0.1
(figure 5b), 0.4 (figure 5c), 0.5 (figure 5d ), 0.9 (figure 5e) and 1.1 (figure 5f ). For
τ = 0.1, the flow is dominated by two large islands of regular motion which occupy
nearly the entire flow domain. For τ = 0.4 and 0.5, there are four islands of regular
motion surrounded by a chaotic sea. For τ = 0.9 and 1.1, the chaotic sea invades
the entire flow domain, and the islands become undetectable. Because the islands of
regular motion form barriers to efficient mixing, the reference mixer is expected to
perform poorly for small values of τ , and to perform much better for large values of τ .

Figure 5(g–p) shows the instantaneous snapshots of the concentration field induced
at time Tf =6 by the reference mixer operating at τ = 0.1, 0.4, 0.5, 0.9 and 1.1 for
the ‘vertical’ and the ‘envelope’ initial configurations. For τ = 0.1, the reference mixer
induces a swirling motion within the two islands of regular motion. The effect of
this swirling motion greatly depends on the geometry of the initial conditions. In
the case of the ‘vertical’ initial condition (figure 5g), the swirling motion mixes,
although poorly, the two fluids because initially they occupy half of each island. In
the case of the ‘envelope’ initial condition (figure 5l ), the swirling motion is almost
unable to mix the two fluids because initially the black fluid is nearly segregated
in one island while the white fluid is segregated in the other. For τ = 0.4 and 0.5,
the mixer induces four islands of regular motion shown in the Poincaré sections in
figure 5(c,d ). The difference in performance between the ‘vertical’ and the ‘envelope’
initial configurations can be explained by superimposing the initial configuration onto
the corresponding Poincare section and assessing the amount of each fluid contained
in each island. For the case τ = 0.4, the reference mixer is more efficient when starting
from the ‘vertical’ initial configuration, while for the case τ = 0.5 it is the opposite; see
figure 5(a). For τ = 0.9 and 1.1, the Poincaré sections shown in figure 5(e,f ) indicate
that asymptotically the reference mixer induces a globally chaotic flow. However, the
different values of the mix-norm associated with figure 5(j,k,o,p) clearly show that in
the case of globally chaotic flows, the asymptotic analysis is of little use to assess the
mixing performance of the mixer over short operating times. For the case τ =1.1,
the thicker striations created by stirring the ‘envelope’ initial configuration contain
bigger and better segregated pockets of black and white fluid than in the case of the
‘vertical’ configuration; see figure 5(k,p). As a result, for τ = 1.1 the reference mixer
performs substantially better for the ‘vertical’ initial configuration than that for the
‘envelope’ configuration. A similar, although less pronounced, effect is observed for
τ = 0.9; see figure 5(j,o).

The reference mixer achieves the best performance for the ‘vertical’ initial
configuration when operating within the small range of switching times,
0.82 � τ � 0.98; see figure 5(a). Within this range, the final mix-norm value is about
3 × 10−2. In this study, we take this performance as the target performance of the
mixer. We visualize the target performance with a grey horizontal line in figure 5(a)
and figures 6(a), 10(a) and 11(a). The goal of this study is to improve and redesign
the reference mixer so that the optimal mixer achieves the target performance over
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Figure 6. Performance of the time-optimized mixer operating at η = 1 in the purely advective
case. (a) Value of the mix-norm induced by the mixer at time Tf =6 vs. switching time τ
for the ‘vertical’ (solid line) and the ‘envelope’ (dashed line) initial configurations. The grey
horizontal line indicates the target mixing performance. (b–o) Snapshots at time Tf = 6 of the
concentration field ϕ stirred by the time-optimized mixer operating at η = 1 and switching
time values 0.1 (b, g); 0.48 (c, h); 0.49 (d, i ); 0.5 (e, j ); 0.51 (f, k ); 1.0 (l ); 1.06 (m); and
1.1 (n, o) when applied to the ‘vertical’ (b–f, l–n) and ‘envelope’ (g–k, o) initial configurations.
The filled circle markers within panel (a) correspond to the concentration fields (b–o).

the entire range of switching time values 0.1 � τ � 1.3 for both the ‘vertical’ and the
‘envelope’ initial configurations. Note that the target performance is about three times
higher than the minimal possible mix-norm value achievable with a checkerboard
arrangement of black and white cells. At resolution M =2048, the one used in this
study, the minimal possible value of the mix-norm is 1.048 × 10−2.
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4. The time-optimized mixer: the effect of protocol optimization

The most intuitive and obvious approach to increasing the performance of the
reference mixer is the optimization of the stirring protocols. In this approach, the
periodic protocols are replaced by more mixing efficient aperiodic protocols generated
by an optimization procedure. As noted by Liu et al. (1994), aperiodic protocols do
not present periodic points and, consequently, flows stirred by such protocols are
free of islands of regular motion. However, it is not trivial to find a mixing efficient
aperiodic protocol. Cortelezzi et al. (2008) have shown, using the mix-norm as a
diagnostic, that there is a large percentage of aperiodic protocols that do not stir
efficiently.

Because the early stages of mixing are dominated by advection, it is essential
for a protocol to be efficient especially during the initial stirring phase. We solve
the protocol optimization problem using the branch-and-bound approach (Lawler &
Wood 1966). A reasonable bounding criterion is that a protocol is likely to be mixing
efficient if it begins with a mixing efficient sub-protocol. Note that although this
criterion is based on a heuristic argument, it leads to a computationally efficient
optimization procedure able to generate protocols with nearly optimal performance
(Cortelezzi et al. 2008).

Given the above criterion, we implement the branch-and-bound approach for a
switching time τ and a final time Tf = Nτ as follows: First, we consider all possible
sub-protocols that consist of η iterations, where the integer parameter η, a sub-multiple
of N , is the switching time horizon. For each of these sub-protocols, we compute
the solution to the purely advective problem (2.3) starting at t =0 and using, for all
protocols, the same initial condition ϕ(x, y, 0) up to one time horizon, t = ητ . Then,
we evaluate the mixing efficiency of these sub-protocols by computing the mix-norm
of each solution, ϕ(x, y, ητ ). The sub-protocol which induces the lowest mix-norm is
optimal and is selected. Finally, we reduce the set of possible protocols to the set of
protocols starting with the best-performing sub-protocol. As a result, we reduce the
number of possible solutions from 2N to 2N−η at the computational cost of evaluating
only 2η sub-protocols of η iterations. To further reduce the number of possible
solutions, we recursively apply the branch-and-bound approach to the reduced set of
possible protocols. That is, the concentration field ϕ(x, y, ητ ) induced by the selected
optimal sub-protocol is used as the initial condition for the optimization over the
next time horizon, ητ � t < 2ητ , and so on until the final time Tf is reached. The
total number of short time horizon optimizations needed to reach the final time Tf

is m = Tf /ητ . The m optimal sub-protocols concatenated together form a suboptimal
stirring protocol, which is referred to as a short time horizon optimal protocol
(Cortelezzi et al. 2008).

We improve the design of the reference mixer by implementing the above described
optimization procedure. The resulting time-optimized mixer in general computes a
different short time horizon optimal protocol for any given choice of the initial
configuration of the mixture and the switching time τ . The performance of the time-
optimized and reference mixers can be meaningfully compared because both mixers
use the same actuating system and, consequently, induce stirring velocity fields with
the same shear rate and power input (2.2).

In order to characterize the performance of the time-optimized mixer, we first
estimate the computational cost required to operate it. For each one of the m

optimizations needed to reach the final time Tf , the short time horizon optimization
procedure evaluates 2η sub-protocols. The map (2.4) is applied for η iterations at the
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first optimization, for 2η iterations at the second optimization, and so on until the final
optimization for which mη iterations are needed. Consequently, the computational
cost of evaluating 2η sub-protocols for all m optimizations is

C =

m∑
k=1

2ηkη = N(N + η)2η−2. (4.1)

It follows that the computational cost grows exponentially with η and quadratically
with N . In the limiting case of η = N , the short time horizon optimization procedure
performs an exhaustive search among all admissible protocols, and the computational
cost is C = 2N−1N2. Note that the computational cost of an exhaustive search grows
exponentially with N , whereas the cost of the short time horizon optimization
procedure grows exponentially with η. Therefore, for small values of η, the short
time horizon optimization procedure is exponentially more cost-efficient than the
exhaustive search for the best-performing protocol.

We now evaluate the performance of the time-optimized mixer when the smallest
possible value of the switching time horizon, η = 1, is selected. We made this choice
because it has been shown that protocols optimized over very short time horizons
are competitively mixing efficient with respect to protocols optimized over longer
time horizons (Cortelezzi et al. 2008). In this case, because the time horizon is
equal to one switching time τ , the optimization procedure simply chooses the best-
performing of the two velocity fields v0 and v1. Therefore, setting η =1 results in the
most cost-effective short-time-horizon optimization of a stirring protocol, whose cost
is C = N(N + 1)/2.

Figure 6(a) shows the values of the mix-norm induced by the time-optimized mixer
at time Tf =6 when applied to the ‘vertical’ (solid line) and the ‘envelope’ (dashed
line) initial configurations. As it can be seen by comparing figures 5(a) and 6(a), the
mixing efficiency of the time-optimized mixer is substantially better than the efficiency
of the reference mixer for small/medium values of the switching time τ . However, for
large values of the switching time, τ � 0.8, the time-optimized mixer generates nearly
periodic stirring protocols and, consequently, the time-optimized mixer and reference
mixers induce similar final values of the mix-norm. This is not surprising because for
large switching times, stirring over two or more consecutive iterations with the same
velocity field results in a lack of folding and an unnecessary amount of stretching,
which contributes to mixing linearly in time. Therefore, the cost of operating the
time-optimized mixer at large switching times is unjustified. Unexpectedly, a closer
analysis of the performance of the time-optimized mixer shows that it deteriorates
substantially in the intervals 0.5 � τ � 0.6 and 1.0 � τ � 1.2. Figure 6(a) also shows
that the time-optimized mixer is clearly less sensitive to the geometry of the initial
configuration than the reference mixer. The relative sensitivity (3.5) of the time-
optimized mixer is about 64.6 %, which is less than δ = 85.6 % computed for the
reference mixer. Overall, the mixing efficiency of the time-optimized mixer is closer to
the target performance but still insufficiently uniform and insensitive to the geometry
of the initial configuration.

It is insightful to relate the mixing efficiency of the time-optimized mixer to the
geometrical structure of the concentration field. Figure 6(b–k ) shows the instantaneous
snapshots of the concentration field induced at time Tf = 6 by the time-optimized
mixer operating at τ =0.1, 0.48, 0.49, 0.5 and 0.51 when applied to the ‘vertical’
and the ‘envelope’ initial configurations, respectively. For switching times τ = 0.1 and
0.48, the mixer induces fine striations over the entire mixing domain for both initial
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Figure 7. Lines of zero shear induced by the velocity fields (2.1) and the four points, A, B , C
and D, around which pockets of unmixed fluid form when the reference and time-optimized
mixers operate at τ = 0.5.

configurations. The best mixing efficiency is achieved in the case of the ‘vertical’
initial configuration, as indicated by markers labelled (b) and (c) placed on the
solid line in figure 6(a). For switching times τ = 0.49, 0.50 and 0.51, surprisingly, all
the concentration fields contain four pockets of black and white fluids surrounded
by a well-mixed region. As τ increases from 0.49 to 0.51, the size of the pockets
increases; see figures 6(d–f ) and 6(i–k ). This results in a sharp and unexpected
increase of the final mix-norm values at τ ≈ 0.5, as shown in figure 6(a). The jump
in performance of the time-optimized mixer is particularly evident in the case of the
‘vertical’ configuration.

Figure 6(a) also shows that the performance of the time-optimized mixer worsens
noticeably when it operates within the range 1.0 � τ � 1.2. In the case of the ‘vertical’
initial configuration, there is a sudden increase in the mix-norm value in the interval
0.98 � τ � 1.10; see the solid line in figure 6(a). In fact, when operating at τ = 1.0, the
time-optimized mixer induces four pockets of black and white fluids; see figure 6(l ). In
the case of the ‘envelope’ initial configuration, the sudden increase in the mix-norm
value occurs within the range 1.06 � τ � 1.17. The mixer is the worst-performing
when operating at τ = 1.1, see the dashed line in figure 6(a), when the corresponding
concentration field presents four large pockets containing both black and white fluids;
see figure 6(o).

Unlike the case of the reference mixer, the pockets of segregated fluid present at
operating conditions 0.5 � τ � 0.6 and 1.0 � τ � 1.2 cannot be induced by the presence
of islands of regular motion because the optimized protocols are aperiodic for these
values of τ . Then what causes the pockets of unmixed fluid shown in figures 6(d–f ),
6(i–k ) and 6(l–o)? To answer this question, we note that for any value of the switching
time, the stirring velocity field v0 (2.1) induces zero shear along the lines y =1/4 and
y = 3/4; see figure 7. Thus, fluid elements located near these lines are merely advected
by v0 while undergoing almost negligible deformations. Similarly, the stirring velocity
field v1 (2.1) induces zero shear along the lines x =1/4 and x = 3/4 and results in only
minor deformations of the fluid elements located in the vicinity of these lines. Let
consider the set S = {A, B, C, D} of the cross points of the four lines described above;
see figure 7. Clearly, for τ =0.5 this set is invariant with respect to any admissible
stirring protocol. Thus, the fluid particles which initially belong to S remain in S, i.e. on
the lines of zero shear for all times. Moreover, the fluid elements initially located near
S remain in the vicinity of S because of the nearly zero shear induced by the velocity
fields v0 and v1. In other words, the neighbourhood of S remains almost invariant



44 O. Gubanov and L. Cortelezzi

(a) (b)

y

x

v0 v1

Figure 8. The schematic of the mixing device equipped with the new actuating system defined
by velocity fields (5.1). (a,b) The stirring velocity fields v0 shifted by ψ = 0.333 and v1 shifted by
ψ = 0.25. The curves joining the opposite sides of the square mixing domain indicate periodic
boundary conditions.

over the finite time interval [0, Tf ] with respect to any admissible stirring protocol.
For a detailed discussion of almost-invariant sets, the reader is referred to the work
of Froyland & Padberg (2009). Our computations also show that pockets of unmixed
fluids emerge even when operating the time-optimized mixer at the more expensive
switching time horizons η = 4 and 8. At switching times close but not equal to 0.5,
the set S and its neighbourhood are almost invariant, which results in the pockets of
unmixed fluids. Therefore, these pockets emerge because of the mechanical limitations
of the actuating device which generates almost-invariant sets around the points A,
B , C and D. The poor performance of the time-optimized mixer when operating at
switching times 1.0 � τ � 1.2 can be explained by a similar argument because the
switching time τ = 0.5 is a sub-multiple of τ = 1.0. Consequently, it is necessary to
redesign the actuating device to prevent the formation of almost-invariant sets and
improve the performance of the mixer over the ranges 0.5 � τ � 0.6 and 1.0 � τ � 1.2.
Note that points similar to those shown in figure 7 have been reported by Finn,
Thiffeault & Gouillart (2006). However, these points do not generate pockets of
unmixed fluids because they lie in the regions of the mixing domain where the shear
rate is not zero.

5. Space-optimized mixer: the effect of velocity profile optimization
In § 4, we have shown the mechanical limitations of the actuating system used to stir

the mixture by the reference and time-optimized mixers. In this section, we introduce
a new actuating system capable of generating stirring velocity fields able to induce
non-zero shear stresses in every chosen point of the mixing domain. We will show
that the new actuating system addresses the weaknesses of the old one.

We find inspiration for modifying the actuating system in a number of previous
studies (Pierrehumbert 1994, 2000; Antonsen et al. 1996; Thiffeault et al. 2004; Shaw
et al. 2007; O’Naraigh & Thiffeault 2008) in which the stirring velocity fields of
the sine flow were shifted along the associate coordinate axis; see figure 8. In these
studies, the phase shift of the velocity profile is randomly chosen at each iteration so
as to eliminate the flow periodicity. It was shown that a random phase shift of the
velocity profiles effectively suppresses the islands of regular motion that emerge in
the periodic sine flow.

Thus motivated, we redesign the actuating system of the reference mixer so that
the new actuator is able to produce a stirring velocity field shifted by an intelligently
chosen phase. Mathematically, the redesign is equivalent to adding a phase shift ψ to
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the original velocity fields (2.1), i.e.

v0(x, y) = [sin(2π(y + ψ)), 0]∗, v1(x, y) = [0, sin(2π(x + ψ))]∗. (5.1)

The mixing device equipped with the new actuating system is visualized in figure 8.
Because the velocity profiles (5.1) are periodic in ψ with period 1, without loss of
generality we restrict the phase shift ψ to the interval [0, 1). The stirring velocity
fields (2.1) generated by the old actuating system can be recovered by setting ψ to
zero in (5.1). As ψ is varied in the range [0, 1), the profiles of the velocity fields v0

and v1 are rigidly translated along y and x axes, respectively (see figure 8) and are
able to induce a non-zero shear rate at any given point within the mixing domain.
Note that the old and new actuators use the same amount of power input (see (2.2))
and deliver the same shear rate. The difference is that the new actuator can deliver
the requested amount of shear at intelligently chosen points, while the old actuator is
forced to deliver a predefined level of shear always at the same point.

The addition of the phase shift to the stirring velocity fields requires the modification
of the solution procedure for the purely advective sine flow problem. The map (2.4)
is replaced by the map

(
X

i,j

m−1

Y
i,j

m−1

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝Xi,j

m − τ sin[2π(Y i,j
m + ψm)]

Y i,j
m

⎞
⎠ mod 1, if αm = 0,

⎛
⎝ Xi,j

m

Y i,j
m − τ sin[2π(Xi,j

m + ψm)]

⎞
⎠ mod 1, if αm = 1,

(5.2)

where {ψm}N
m=1 are the phase shifts used at iterations 1, . . . , N .

In order to test the new mixer and compare it with the reference mixer, the mixture is
stirred using a periodic protocol. The phase shift ψ of the stirring velocity field (5.1)
is optimized by selecting at each iteration the phase shift that induces the lowest
possible value of the mix-norm. We refer to this type of optimization as the phase
optimization and call the resulting mixing device the space-optimized mixer. The latter
name reflects the nature of the phase optimization, whereby different values of ψ

alter the spatial distribution of the shear rate exerted by velocity fields (5.1) within
the mixing domain.

The problem of finding the optimal value of the phase shift is a continuous
optimization problem because ψ can assume any real value within the range [0, 1).
We use as a cost function the mix-norm, as in the case of the time-optimized mixer.
Numerical experiments indicate that the cost function is continuous in ψ; see figure 9
for an example. Therefore, the problem of finding the optimal phase shift can be
solved by using one of the conventional continuous optimization methods. We choose
the derivative-free pattern search method (see Lewis & Torczon 2000, and references
therein), which is implemented in the APPSPACK library (see Kolda 2005 and
references therein), because of the lack of analytic expressions for the derivatives of
the cost function.

For a given switching time τ and a final time Tf = Nτ , the phase optimization
generates a periodic sequence of the optimal velocity profiles v0(ψ1), v1(ψ2), v0(ψ3),
. . . . At each iteration, the optimal velocity profile v0(ψk) or v1(ψk) corresponds to a
sinusoidal profile shifted by a value of the phase ψk , which minimizes the mix-norm
of the concentration field over the kth switching time. Starting at t = 0 with a given
initial configuration of the mixture, the pattern search method (Lewis & Torczon
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Figure 9. Typical structure of the cost function minimized by the phase optimization
procedure.

2000) is used to find the optimal value of the phase shift ψ1 for the velocity field v0.
The concentration field ϕ(x, y, τ ) induced by the velocity field v0(ψ1) is then used as
the initial condition for the optimization over the next switching time, τ � t < 2τ ,
and so on until the final time, Tf =Nτ , is reached. As a result, the space-optimized
sequence of the stirring velocity fields is prescribed by the periodic protocol and the
sequence of the optimal phase shifts, ψ1, ψ2, . . . , ψN .

To characterize fully the performance of the space-optimized mixer, we estimate
the computational cost required to operate it. Consistently with the cost estimation
presented in § 4, we perform our estimation in terms of the total number of iterations,
N , the switching time, τ , and the average number P of evaluations of the cost function
per iteration. In the purely advective case, the map (5.2) is applied on average P times
for one iteration at the first iteration, for P times for two iterations at the second
iteration, and so on until the final iteration. Consequently, the computational cost of
the optimization is

C =

N∑
k=1

kP = P
N(N + 1)

2
. (5.3)

It follows that the computational cost grows linearly with P and quadratically with
N . Numerical computations performed in this work show that an average of P = 13
evaluations of the cost function is sufficient to determine the optimal phase shift with
a relative accuracy of 1 %. The resulting computational cost of the space-optimized
mixer is 13 times more expensive than that of the time-optimized mixer operating
at η = 1 and becomes comparable with the computational cost of the time-optimized
mixer operating at η = 5.

To characterize the mixing performance of the space-optimized mixer, we compare
it with the performance of the reference and time-optimized mixers. We begin with
the comparison with the reference mixer. Figure 10(a), which shows the values of
the mix-norm induced by the space-optimized mixer at time Tf = 6 when applied
to the ‘vertical’ (solid line) and the ‘envelope’ (dashed line) initial configurations,
should be compared with figure 5(a). The improvement in performance is striking
and shows the impact of the new actuating system and optimization procedure on
the performance of the space-optimized mixer. The space-optimized mixer nearly
delivers the target performance over the range of operating conditions τ ∈ [0.5, 1.3].
At low values of τ , i.e. τ ∈ [0.1, 0.4], the performance of the space-optimized mixer
deteriorates visibly. Furthermore, the spread of the solid and the dashed lines in
figures 10(a) and 5(a) shows that the space-optimized mixer is much less sensitive
than the reference mixer to the geometry of the initial concentration field. The value
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Figure 10. Performance of the space-optimized mixer in the purely advective case. (a) Value
of the mix-norm induced by the mixer at time Tf = 6 vs. switching time τ for the ‘vertical’
(solid line) and the ‘envelope’ (dashed line) initial configurations. The grey horizontal line
indicates the target mixing performance. (b–k ) Snapshots at time Tf = 6 of the concentration
field ϕ stirred by the space-optimized mixer operating at switching time values 0.1 (b),(g); 0.3
(c, h); 0.4 (d, i ); 0.5 (e, j ) and 1.1 (f, k ) when applied to the ‘vertical’ (b–f ) and ‘envelope’
(g–k ) initial configurations. The filled circle markers and the open circle markers within panel
(a) correspond to the concentration fields (b–f ) and (g–k ), respectively.

of the relative sensitivity (3.5) is about 23.2 % for the space-optimized mixer, which
is considerably less than δ =85.6 % for the reference mixer.

We now compare the mixing performance of the space- and time-optimized
mixers, figure 10(a) and figure 6(a), respectively. The performance of the space-
optimized mixer is clearly more consistent than the erratic performance of the
time-optimized mixer. In particular, the space-optimized mixer, thanks to the new
actuating system, nearly delivers the target performance within the range τ ∈ [0.5, 1.3],
while the performance of the time-optimized mixer visibly deteriorates in the ranges
τ ∈ [0.5, 0.6] and τ ∈ [1.0, 1.2] as a result of the mechanical limitation of the old
actuating system. However, the mixing performance of the time-optimized mixer
is visibly better than the performance of the space-optimized mixer in the low
range of operating conditions, i.e. τ ∈ [0.1, 0.4]. The space-optimized mixer is also
considerably less sensitive to the geometry of the initial concentration field than
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the time-optimized mixer. The relative sensitivity for the space-optimized mixer,
δ =23.2 %, is considerably less than δ = 64.6 % for the time-optimized mixer.

Figures 10(b–k ) and 6(b–k ) show the final concentration fields induced by the
space- and time-optimized mixers at the final time Tf = 6 when applied to the ‘vertical’
and the ‘envelope’ initial configurations, respectively. In the low range of operating
conditions, τ ∈ [0.1, 0.4], where the reference mixer induces islands of regular motion,
the space-optimized mixer struggles to avoid the formation of such structures. It
seems that the space-optimized mixer, which is constrained to use a periodic protocol,
avoids the formation of the islands of regular motion mostly by favouring folding
over stretching, as it is shown by the convoluted geometry with thick lamellae of
the concentration field; see figures 10(b) and 10(g) for the case τ = 0.1. In the
medium–high range of operating conditions, i.e. for τ � 0.5, the geometry of the
concentration field induced by the space-optimized mixer shows thin striations with
little segregation of white or black fluids; see figure 10(e,f,j,k ). These figures show
a remarkable improvement with respect to the time-optimized mixer in the ranges
0.5 � τ � 0.6 and 1.0 � τ � 1.2.

The performance deterioration of the space-optimized mixer for low switching
times can be related to the performance deterioration of the reference mixer. In
fact, these mixers share the same periodic stirring protocol, which is known to be
mixing-inefficient for small values of the switching time. Therefore, we can expect to
improve the mixing efficiency of the space-optimized mixer by optimizing its stirring
protocols.

6. Optimal mixer: coupled time and space optimizations
The time- and space-optimized mixers presented in the previous sections leverage

two totally different optimization philosophies. The former optimizes the protocol by
forecasting the future, while the latter optimizes the local delivery of the shear rate.
They both have strengths and weaknesses. Because the two optimization procedures
are completely uncoupled, it is natural to explore the advantages of coupling them in
an attempt to produce a better optimization procedure.

We design the optimal mixer by implementing on the mechanical configuration
of the space-optimized mixer a coupled optimization procedure as follows. At each
iteration, we perform a two-step procedure. First, we find the optimal phase shifts for
both stirring velocity fields v0 and v1. Second, we select the best-performing of the two
optimal velocity fields. Clearly, the computational cost of the coupled optimization is
twice as large as the cost of the space optimization; see estimate (5.3).

Figure 11(a) summarizes the performance of the optimal mixer in the purely
advective case. The mixer is able to deliver the target performance over nearly the
entire operating range 0.1 � τ � 1.3. Only for large values of τ the performance
is slightly above the target performance. Moreover, the optimal mixer is nearly
insensitive to the initial geometry of the concentration field. Its relative sensitivity is
δ =20.4 %, which is considerably less than δ = 64.6 % for the time-optimized mixer
and even less than δ = 23.2 % for the space-optimized mixer.

Figure 11(b–k ) shows the snapshots at the final time Tf = 6 of the concentration
field ϕ stirred by the optimal mixer when applied to the ‘vertical’ (figure 11b–f )
and ‘envelope’ (figure 11g–k ) initial configurations. For τ = 0.1, which corresponds
to almost the worst performance of the space-optimized mixer, the optimal mixer is
able to induce less convoluted and thinner striations than the space-optimized mixer
thanks to the protocol optimization; see figures 11(b,g) and 10(b,g). For τ = 0.5, which
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Figure 11. Performance of the optimal mixer. (a) The value of the mix-norm induced by
the mixer at time Tf = 6 when applied to the ‘vertical’ (solid line) and the ‘envelope’ (dashed
line) initial configurations. The grey horizontal line indicates the target performance. (b–k )
Snapshots at time Tf =6 of the concentration field ϕ stirred by the optimal mixer at switching
time values 0.1 (b, g); 0.5 (c, h); 0.9 (d, i ); 1.06 (e); 1.1 (j ); 1.3 (f, k ) when applied to the
‘vertical’ (b–f ) and ‘envelope’ (g–k ) initial configurations. The filled circle markers and the
open circle markers within panel (a) correspond to the concentration fields (b–f ) and (g–k ),
respectively.

corresponds to almost the worst performance of the time-optimized mixer caused by
the presence of pockets of segregated fluids (see figure 6e and 6j ), the optimal mixer
induces final concentration fields free of pockets thanks to the phase optimization (see
figures 11c and 11h). For τ = 0.9, which corresponds to the best mixing performance
of the reference mixer, the optimal mixer slightly improves the performance and
induces final concentration fields similar to the concentration fields induced by the
reference mixer; see figures 11(d,i ) and 5(j,o). For τ = 1.06 and 1.1, which correspond
to the worst performance of the time-optimized mixer when applied to the ‘vertical’
and ‘envelope’ initial configurations, respectively (see figure 6a), thanks to the phase
optimization, the final mix-norm induced by the optimal mixer is nearly a flat line,
see figure 11(a).
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The optimal mixer is the least mixing efficient when it operates at τ = 1.3 and
is applied to the ‘envelope’ initial configuration; see the open circle marker (k )
in figure 11(a). For this value of the switching time, the optimal mixer is also
most sensitive to the geometry of the initial concentration field; see figures 11(f )
and 11(k ). The deterioration of the mixing performance within the range 1.0 � τ � 1.3
is observed for any of the mixing devices considered in this study; see figures 5(a),
6(a), 10(a) and 11(a). Although in the case of the optimal mixer this deterioration
in performance is less pronounced than that for the other mixers, it persists. This
can be explained recalling that for large switching times, 1.0 � τ � 1.3, all mixers
produce an insufficient amount of folding and an excessive amount of stretching. The
deterioration in performance for 1.0 � τ � 1.3 also agrees with the estimated stretching
efficiency, striation thickness and folding obtained in § 3. As τ increases from 1.0 to
1.3, the estimated stretching efficiency decreases (see figure 2a), the estimated striation
thickness increases (see figure 2b) and the amount of folding remains nearly the same
(see figure 3). Nevertheless, the optimal mixer is still able to significantly improve the
mixing performance when compared with the reference mixer even for large switching
times, thanks to the phase optimization.

7. Summary and conclusions
In this study, we considered the conceptual problem of designing an optimal mixer,

a mixing device able to deliver a uniform and optimal mixing performance within its
entire operating range and for a wide range of initial configurations of the mixture.
We described the sequence of steps needed to derive an optimal mixer starting from
a reference mixing device.

As a reference mixer, we considered the sine flow. We characterized the stretching
efficiency and the rate of folding of the reference mixer and determined its operating
range. As a measure of mixing efficiency, we used the mix-norm. We showed that the
reference mixer is highly mixing efficient only within a small sub-range of operating
conditions. Within the low range of operating conditions, the reference mixer performs
poorly because of the islands of regular motion that emerge under the action of its
periodic stirring protocol. Within the high range of operating conditions it performs
poorly, because it induces an insufficient amount of folding and an excessive amount of
stretching. Moreover, we showed that the mixing performance of this mixer strongly
depends on the initial configuration of the mixture. We selected the best mixing
efficiency delivered by the reference mixer as the target performance to be achieved
by the optimal mixer over the entire operating range.

Our first step towards the design of an optimal mixer was to replace the periodic
stirring protocols used by the reference mixer with optimized aperiodic protocols
obtained using the short time horizon optimization procedure. As a cost function for
this optimization, we used the mix-norm. We observed that the resulting mixing device,
the time-optimized mixer, performed substantially better than the reference mixer but
within two windows of operating conditions. We showed that the deterioration in
performance of the time-optimized mixer within these two windows is caused by the
mechanical limitations of the actuating system. We also noted that over the high
range of operating conditions, the short time horizon procedure generates stirring
protocols that are nearly periodic, and thus optimization of a stirring protocol within
this range becomes ineffective. Finally, we observed that the time-optimized mixer is
still too sensitive to the geometry of the initial configuration of the mixture, although
considerably less sensitive than the reference mixer.
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Our second step towards the design of the optimal mixer was to redesign the
actuating system of the reference mixer so as to address its mechanical limitations.
We introduced a new actuating system able to generate stirring velocity fields that
are shiftable along their reference axis and an optimization procedure able to select
at each iteration the phase shift that is the most mixing efficient. We used the mix-
norm as the cost function for the optimization. We tested the space-optimized mixer
with a periodic protocol. This mixer nearly delivers the target performance over a
range from medium to high operating conditions. However, within the low range
of operating conditions, we observed a deterioration in performance caused by the
periodic stirring protocol, which generates an insufficient amount of stretching and
an excessive amount of folding. Finally, we showed that the space-optimized mixer is
nearly insensitive to the geometry of the initial configuration.

Our final step towards the design of the optimal mixer was to couple the time
and the phase optimizations within a mixing device equipped with the new actuating
system. We obtained an optimal mixer. We observed that the optimal mixer is highly
mixing efficient within the entire range of operating conditions which spans over
more than one order of magnitude. It achieves the target performance in only six
characteristic advection times. Moreover, the optimal mixer is nearly insensitive to
different geometries of the initial configuration of the mixture.

The optimal mixer is able to overcome two of the major problems affecting the
mixing performance of many industrially relevant mixers. Namely, the non-uniformity
of the mixing performance owes to (i) different operating conditions and (ii) different
configurations of the mixture injected into the mixing device. We showed that these
two problems can be conceptually addressed by combining two simple optimizations:
the optimization of the stirring protocol over very short horizons and the optimization
of the profiles of the stirring velocity fields. These two optimizations complement
each other. The optimization of the stirring protocol effectively controls in time the
amounts of stretching and folding induced by the mixing device. In particular, in the
low range of operating conditions of the sine flow, this optimization avoids excessive
folding and promotes stretching. The optimization of the profiles of the stirring
velocity fields controls the spatial distribution of stretching within the mixing domain
by delivering the highest shear rate to the regions that need it most. In particular,
this optimization remarkably enhances the mixing performance within medium and
high ranges of operating conditions of the sine flow. Moreover, this optimization
nearly eliminates the sensitivity of the mixer to the initial geometrical configuration
of the mixture.

Certainly, with the current state of technology, the above two optimizations cannot
be directly applied to the complex flows observed in applications. How to predict
realistic complex flows and flows of non-Newtonian fluids? How to evaluate the
homogenization quality of an inherently three-dimensional concentration field? How
to change efficiently the shapes of the profiles of the stirring velocity fields, and what
shapes to choose? Our work provides an estimate of the potential improvements
to the mixing performance achievable combining the optimization of the stirring
protocol and the profiles of the stirring velocity fields. Our results indicate that
without implementing these procedures, one should expect a dramatic decrease in
the mixing performance for certain ranges of operating conditions and for some
configurations of the mixture injected into the mixing device.
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